Dijkstra algoritm võimaldab meil leida lühima tee graafiku kahe tippu vahel.
See erineb minimaalsest sirutuspuust, kuna kahe tipu lühim vahemaa ei pruugi hõlmata kõiki graafi tippe.
Kuidas Dijkstra algoritm töötab
Dijkstra algoritm töötab selle põhjal, et tippude A ja D vahelise B -> D
lühima tee mis tahes alamtee A -> D
on ühtlasi lühim tee tippude B ja D vahel.

Djikstra kasutas seda omadust vastupidises suunas, st me hindame üle iga tipu kauguse algtippust. Seejärel külastame iga sõlme ja selle naabreid, et leida neile naabritele lühim alamtee.
Algoritm kasutab ahne lähenemist selles mõttes, et leiame järgmise parima lahenduse, lootes, et lõpptulemus on kogu probleemile parim lahendus.
Dijkstra algoritmi näide
Lihtsam on alustada näitest ja seejärel mõelda algoritmile.








Djikstra algoritmi pseudokood
Peame säilitama iga tipu rajakauguse. Me võime selle salvestada massiivi v suurusega, kus v on tippude arv.
Samuti tahame, et oleks võimalik saada lühim tee, mitte ainult teada kõige lühema tee pikkust. Selleks kaardistame iga tipu tipuga, mis viimati oma tee pikkust uuendas.
Kui algoritm on läbi, saame raja leidmiseks sihttippust tagasi lähtetippu minna.
Minimaalse prioriteedijärjekorra abil saab tippu tõhusamalt vastu võtta, kui teekond on kõige väiksem.
function dijkstra(G, S) for each vertex V in G distance(V) <- infinite previous(V) <- NULL If V != S, add V to Priority Queue Q distance(S) <- 0 while Q IS NOT EMPTY U <- Extract MIN from Q for each unvisited neighbour V of U tempDistance <- distance(U) + edge_weight(U, V) if tempDistance < distance(V) distance(V) <- tempDistance previous(V) <- U return distance(), previous()
Dijkstra algoritmi kood
Dijkstra algoritmi rakendamine C ++ -s on toodud allpool. Koodi keerukust saab küll parandada, kuid abstraktsioone on mugav seostada kood algoritmiga.
Python Java C C ++ # Dijkstra's Algorithm in Python import sys # Providing the graph vertices = ((0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0), (1, 1, 0, 1, 1, 0, 0), (1, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1, 0)) edges = ((0, 0, 1, 2, 0, 0, 0), (0, 0, 2, 0, 0, 3, 0), (1, 2, 0, 1, 3, 0, 0), (2, 0, 1, 0, 0, 0, 1), (0, 0, 3, 0, 0, 2, 0), (0, 3, 0, 0, 2, 0, 1), (0, 0, 0, 1, 0, 1, 0)) # Find which vertex is to be visited next def to_be_visited(): global visited_and_distance v = -10 for index in range(num_of_vertices): if visited_and_distance(index)(0) == 0 and (v < 0 or visited_and_distance(index)(1) <= visited_and_distance(v)(1)): v = index return v num_of_vertices = len(vertices(0)) visited_and_distance = ((0, 0)) for i in range(num_of_vertices-1): visited_and_distance.append((0, sys.maxsize)) for vertex in range(num_of_vertices): # Find next vertex to be visited to_visit = to_be_visited() for neighbor_index in range(num_of_vertices): # Updating new distances if vertices(to_visit)(neighbor_index) == 1 and visited_and_distance(neighbor_index)(0) == 0: new_distance = visited_and_distance(to_visit)(1) + edges(to_visit)(neighbor_index) if visited_and_distance(neighbor_index)(1)> new_distance: visited_and_distance(neighbor_index)(1) = new_distance visited_and_distance(to_visit)(0) = 1 i = 0 # Printing the distance for distance in visited_and_distance: print("Distance of ", chr(ord('a') + i), " from source vertex: ", distance(1)) i = i + 1
// Dijkstra's Algorithm in Java public class Dijkstra ( public static void dijkstra(int()() graph, int source) ( int count = graph.length; boolean() visitedVertex = new boolean(count); int() distance = new int(count); for (int i = 0; i < count; i++) ( visitedVertex(i) = false; distance(i) = Integer.MAX_VALUE; ) // Distance of self loop is zero distance(source) = 0; for (int i = 0; i < count; i++) ( // Update the distance between neighbouring vertex and source vertex int u = findMinDistance(distance, visitedVertex); visitedVertex(u) = true; // Update all the neighbouring vertex distances for (int v = 0; v < count; v++) ( if (!visitedVertex(v) && graph(u)(v) != 0 && (distance(u) + graph(u)(v) < distance(v))) ( distance(v) = distance(u) + graph(u)(v); ) ) ) for (int i = 0; i < distance.length; i++) ( System.out.println(String.format("Distance from %s to %s is %s", source, i, distance(i))); ) ) // Finding the minimum distance private static int findMinDistance(int() distance, boolean() visitedVertex) ( int minDistance = Integer.MAX_VALUE; int minDistanceVertex = -1; for (int i = 0; i < distance.length; i++) ( if (!visitedVertex(i) && distance(i) < minDistance) ( minDistance = distance(i); minDistanceVertex = i; ) ) return minDistanceVertex; ) public static void main(String() args) ( int graph()() = new int()() ( ( 0, 0, 1, 2, 0, 0, 0 ), ( 0, 0, 2, 0, 0, 3, 0 ), ( 1, 2, 0, 1, 3, 0, 0 ), ( 2, 0, 1, 0, 0, 0, 1 ), ( 0, 0, 3, 0, 0, 2, 0 ), ( 0, 3, 0, 0, 2, 0, 1 ), ( 0, 0, 0, 1, 0, 1, 0 ) ); Dijkstra T = new Dijkstra(); T.dijkstra(graph, 0); ) )
// Dijkstra's Algorithm in C #include #define INFINITY 9999 #define MAX 10 void Dijkstra(int Graph(MAX)(MAX), int n, int start); void Dijkstra(int Graph(MAX)(MAX), int n, int start) ( int cost(MAX)(MAX), distance(MAX), pred(MAX); int visited(MAX), count, mindistance, nextnode, i, j; // Creating cost matrix for (i = 0; i < n; i++) for (j = 0; j < n; j++) if (Graph(i)(j) == 0) cost(i)(j) = INFINITY; else cost(i)(j) = Graph(i)(j); for (i = 0; i < n; i++) ( distance(i) = cost(start)(i); pred(i) = start; visited(i) = 0; ) distance(start) = 0; visited(start) = 1; count = 1; while (count < n - 1) ( mindistance = INFINITY; for (i = 0; i < n; i++) if (distance(i) < mindistance && !visited(i)) ( mindistance = distance(i); nextnode = i; ) visited(nextnode) = 1; for (i = 0; i < n; i++) if (!visited(i)) if (mindistance + cost(nextnode)(i) < distance(i)) ( distance(i) = mindistance + cost(nextnode)(i); pred(i) = nextnode; ) count++; ) // Printing the distance for (i = 0; i < n; i++) if (i != start) ( printf("Distance from source to %d: %d", i, distance(i)); ) ) int main() ( int Graph(MAX)(MAX), i, j, n, u; n = 7; Graph(0)(0) = 0; Graph(0)(1) = 0; Graph(0)(2) = 1; Graph(0)(3) = 2; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 0; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 3; Graph(1)(6) = 0; Graph(2)(0) = 1; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 1; Graph(2)(4) = 3; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 2; Graph(3)(1) = 0; Graph(3)(2) = 1; Graph(3)(3) = 0; Graph(3)(4) = 0; Graph(3)(5) = 0; Graph(3)(6) = 1; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 3; Graph(4)(3) = 0; Graph(4)(4) = 0; Graph(4)(5) = 2; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 3; Graph(5)(2) = 0; Graph(5)(3) = 0; Graph(5)(4) = 2; Graph(5)(5) = 0; Graph(5)(6) = 1; Graph(6)(0) = 0; Graph(6)(1) = 0; Graph(6)(2) = 0; Graph(6)(3) = 1; Graph(6)(4) = 0; Graph(6)(5) = 1; Graph(6)(6) = 0; u = 0; Dijkstra(Graph, n, u); return 0; )
// Dijkstra's Algorithm in C++ #include #include #define INT_MAX 10000000 using namespace std; void DijkstrasTest(); int main() ( DijkstrasTest(); return 0; ) class Node; class Edge; void Dijkstras(); vector* AdjacentRemainingNodes(Node* node); Node* ExtractSmallest(vector& nodes); int Distance(Node* node1, Node* node2); bool Contains(vector& nodes, Node* node); void PrintShortestRouteTo(Node* destination); vector nodes; vector edges; class Node ( public: Node(char id) : id(id), previous(NULL), distanceFromStart(INT_MAX) ( nodes.push_back(this); ) public: char id; Node* previous; int distanceFromStart; ); class Edge ( public: Edge(Node* node1, Node* node2, int distance) : node1(node1), node2(node2), distance(distance) ( edges.push_back(this); ) bool Connects(Node* node1, Node* node2) ( return ( (node1 == this->node1 && node2 == this->node2) || (node1 == this->node2 && node2 == this->node1)); ) public: Node* node1; Node* node2; int distance; ); /////////////////// void DijkstrasTest() ( Node* a = new Node('a'); Node* b = new Node('b'); Node* c = new Node('c'); Node* d = new Node('d'); Node* e = new Node('e'); Node* f = new Node('f'); Node* g = new Node('g'); Edge* e1 = new Edge(a, c, 1); Edge* e2 = new Edge(a, d, 2); Edge* e3 = new Edge(b, c, 2); Edge* e4 = new Edge(c, d, 1); Edge* e5 = new Edge(b, f, 3); Edge* e6 = new Edge(c, e, 3); Edge* e7 = new Edge(e, f, 2); Edge* e8 = new Edge(d, g, 1); Edge* e9 = new Edge(g, f, 1); a->distanceFromStart = 0; // set start node Dijkstras(); PrintShortestRouteTo(f); ) /////////////////// void Dijkstras() ( while (nodes.size()> 0) ( Node* smallest = ExtractSmallest(nodes); vector* adjacentNodes = AdjacentRemainingNodes(smallest); const int size = adjacentNodes->size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest->distanceFromStart; if (distance distanceFromStart) ( adjacent->distanceFromStart = distance; adjacent->previous = smallest; ) ) delete adjacentNodes; ) ) // Find the node with the smallest distance, // remove it, and return it. Node* ExtractSmallest(vector& nodes) ( int size = nodes.size(); if (size == 0) return NULL; int smallestPosition = 0; Node* smallest = nodes.at(0); for (int i = 1; i distanceFromStart distanceFromStart) ( smallest = current; smallestPosition = i; ) ) nodes.erase(nodes.begin() + smallestPosition); return smallest; ) // Return all nodes adjacent to 'node' which are still // in the 'nodes' collection. vector* AdjacentRemainingNodes(Node* node) ( vector* adjacentNodes = new vector(); const int size = edges.size(); for (int i = 0; i node1 == node) ( adjacent = edge->node2; ) else if (edge->node2 == node) ( adjacent = edge->node1; ) if (adjacent && Contains(nodes, adjacent)) ( adjacentNodes->push_back(adjacent); ) ) return adjacentNodes; ) // Return distance between two connected nodes int Distance(Node* node1, Node* node2) ( const int size = edges.size(); for (int i = 0; i Connects(node1, node2)) ( return edge->distance; ) ) return -1; // should never happen ) // Does the 'nodes' vector contain 'node' bool Contains(vector& nodes, Node* node) ( const int size = nodes.size(); for (int i = 0; i < size; ++i) ( if (node == nodes.at(i)) ( return true; ) ) return false; ) /////////////////// void PrintShortestRouteTo(Node* destination) ( Node* previous = destination; cout << "Distance from start: " id
node2 == node) ( cout << "adjacent: " id
Dijkstra's Algorithm Complexity
Time Complexity: O(E Log V)
where, E is the number of edges and V is the number of vertices.
Space Complexity: O(V)
Dijkstra's Algorithm Applications
- To find the shortest path
- In social networking applications
- In a telephone network
- To find the locations in the map